应用案例

公司概况

Lockheed在严苛的期限内完成了对1950年制的战斗机的扫描工作。在InnovMetric和Berding 3D的协助下，Lockheed实现了对1950年制战斗机的扫描工作。75年过去了，LM M&FC公司仍拥有10,000名员工。
背景

2005年，Lockheed Martin公司的导弹和炮火控制部开始对已有50年历史的瑞典造喷气式战斗机，Saab A-35 Draken的空气动力学性能产生了兴趣。LM M&FC的空气动力学专家需要这架飞机的精确数据图，以导入工程分析工具获得真实空气动力学性能。

Lockheed Martin需要整架飞机完整、精确的表面数据，以及机上武器和炮舱的高精度扫描数据。于是他们求助于Berding 3D的扫描能力，产生飞机的表面数据用以计算机飞行仿真。

这些数据都是为了确保武器发送系统能够在21世纪战斗环境中生存。像Lockheed Martin之类的航空承包商不断地寻求能减少试验成本的方法，一种解决方案就是用商业性活动替代军事演习设施，用数字化方式而非实物方式。

Berding 3D扫描公司的技术经理Mat Cappel遇到了两大扫描和数字化挑战：

速度：Lockheed Martin面临的形势很紧急，因为飞行仿真需要90天连续不断地数据处理。初始表面数据要在一个星期内获得，而Berding 3D完成了任务。

模型大小：对于数字化扫描而言，Draken是一个庞然大物。这架飞机有50英尺长，31英尺的机翼跨度和近14英尺高的方向舵。为了使文件尺寸最小化，采用了两种扫描仪：一种是针对细区域的高精度扫描仪（Konica-Minolta的Vivid 910），一种是针对平坦区域的低精度（高速）扫描仪（Leica的Cyra2500）。为了解决这些挑战，Berding 3D转而求助于PolyWorks®，InnovMetric软件公司开发的世界领先的点云处理软件。
商业挑战
获取一架长 50 英尺, 机翼跨度 31 英尺的全尺寸飞机的 3D 外形。
快速产生 NURBS 曲面导入仿真软件。
处理来自高和低两种精度扫描仪的数据。

解决方案
选择该领域正确的团队

Berding 能争取到这个任务，是由于其拥有在长距和短距扫描方面独一无二的经验。这也得归功于 Berding 3D 能快速应对。它在 2005 年感恩节前一周接到了 Lockheed Martin 的电话。Cappel 和一位扫描仪操作者三天后搭上了去洛杉矶的飞机。扫描工作在两天内完成，他们赶上了回家过感恩节。扫描是在加利福尼亚莫哈韦沙漠的 Inyokern 进行的。剩余的 Drakens 中 6 架被打磨后飞到那里。 (Drakens 在瑞典语中是“龙”的意思。)

在 Saab A-35 项目中，Berding 3D 需快速处理几个 G 的精度差别极大的点云数据，并将其转换成单个 CAD 模型。在高精度扫描中，Berding 搜集了 60 片点云，平均每片点云有 66,000,000 个点。这些都是用 Minolta Vivid 910 扫描仪得到的相邻近距离点云，每片有两英尺见方。

低精度扫描工作由 Leica 大地扫描系列中的 Cyra2500 完成。技术人员总共收集了大约 2 千万个点。“即使是最小的空气动力学造型，这个精度也足够了。而对于诸如铆钉头和铰链点的不重要数据这个精度又不会显得过高”，Cappel 说道。“这种低精度扫描对于我们更像是地质勘查。”

所有扫描和数字化工作之后－大约 250 兆字节的点云，共计 4.6G 的数据－Berding 最终交付给 Lockheed Martin 的是一份相对较小的、200MB 的末压缩数据。

PolyWorks 是组合远程和短程数据的最好软件，也是能如此有效地做此工作的唯一软件。
若不能混合高精度和低精度的点云，整架飞机的数字化可能是不能实现的。

Mat Cappel
Berding 3D
的项目经理
从点云至可用于CAD

点云对齐

PolyWorks IMAlign 模块用来将 260 个点云片对齐成一个模型。PolyWorks 的对齐技术不需要在部件上设目标点或标志。它是靠各点云的几何形状来相对对齐的。Cappel 说：“不在飞机上设目标点大大改进了扫描过程。”

三角化模型

点云片对齐后，将点云模型导入PolyWorks' IMMerge 模块，进而转换成 STL 格式的三角化模型。

PolyWorks 基于表面曲率生成三角化网格，保留边缘和倒角处的高分辨率（小三角面）而平坦区域产生较大的三角面。

某些仿真软件可处理 STL 格式的文件。但 Lockheed Martin M&FC 部门使用的体统不支持此格式，所以需要一个在 CAD 软件中可编辑的文件。

“所有同我们合作的 Lockheed 成员告诉我们，他们都惊讶于这些数据的质量和完整性。仿真过程未产生尖脉冲和重叠这类足以毁掉仿真进程的现象。InnovMetric 的应用工程师给了我们很大的帮助。他们就像为我们团队配备了额外的技术员，帮助我们克服了困难。”

Mat Cappel
Berding 3D

Saab A-35 Draken
软件的NURBS曲面

创建曲线网格
为了建立一个可用的CAD模型，PolyWorks在三角化模型上建立了一种面的数学表征，称之为NURBS（非均匀有理B样条）。在计算出NURBS曲面之前，要在三角化模型上生成一个曲线网格，来决定哪里需要拟合曲面。PolyWorks提供自动和手动两种方式创建曲线网格。用PolyWorks的特征算法或平滑拟合特征线抽出。用户只需点击几下鼠标，就可以技术性地改进曲线网格。

NURBS曲面
然后在曲线网格上自动拟合NURBS曲面。这些面以IGES或STEP格式导出到Lockheed Martin的分析系统。最终交付的文件在精度、文件大小和面片数量上满足了Lockheed Martin的要求。

三个因素很大程度上决定了NURBS曲面的质量
NURBS曲面下由PolyWorks产生的高质量三角化模型
在创建曲线网格时允许产生T型结，从而确保合理的面片分布
创建曲线网格时抽取重要特征线的能力以及用这些关键曲线约束NURBS曲面的生成
优势

从扫描到最终交付，Berding 花费了两周半来获取、编辑并格式化大量的 Saab A-35 的扫描数据，以满足 Lockheed Martin 的要求。“对于一个几十个 G 数据量的话，这是一个非常快的交付周期，” Mat Cappel 说道。

可量化的优势：

- 整架飞机，每个外表面，仅由两个人在两天之内完成扫描数字化。用其他方法将花费2到4倍更长的时间，因此在数据获取上节约了67%至80%的时间。

- 能精确地处理 4G 的数据，只有 PolyWorks 可以信赖。否则文件只能分成几份，需要额外的合并和数据组合步骤，这将使处理时间翻番甚至可能三倍。

- 其他竞争软件不可能这么快，时间是至关重要的。PolyWorks 比其他效率低的软件节约了近两倍时间。

- 相对于在风洞中的物理试验，基于计算机的仿真节约了大量成本。

展望未来

正如 Lockheed Martin 对 Berding 3D 所说的，Saab A-35 的项目意图是对这一商业公司产的有待测试的飞机获取其空气动力学方面更多的信息，这一任务已经完成。

Draken 的空气动力性能对于当时来说是具革命性意义的，且时隔半个世纪，当今仍旧不可小觑。Draken 是用来：

- 在战区附件的小规模领空执行短程起降任务

- 是兼具高速和低速性能的优化组合

- 可在几分钟内重新装备导弹

- 飞机的4个组件用螺栓连接，可以随时替换，发送，或升级。

归功于 Berding 和 InnovMetric，Lockheed Martin 目前已经掌握了 Draken 在飞行仿真系统中的所有空气动力学信息，且是快速地并以极小的成本获得的。
数据获取上节约了67% to 80% 的时间
data处理上节约了50% 的时间

你知道吗？

Draken 的设计者给予了它杰出的空气动力学性能。领先同期技术几十年，是第一架设计阶段制造了全尺寸风洞模型的飞机，而不是 1/8 比例（或更小）风洞模型。模型越大，试验结果越好。

Draken 是 Saab 在瑞典的 Linkoping 于1949 年设计制造的，它是欧洲第一架超音速战斗机。几款新型的 Drakens 仍在服役中，都是作为民用。1955 至 1974 年间有 600 多架 Draken 用于瑞典、丹麦、芬兰和奥地利的军事业。